Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Eastern boundary upwelling systems (EBUSs) host equatorward wind-driven near-surface currents overlying poleward subsurface undercurrents. Various previous theories for these undercurrents have emphasized the role of poleward alongshore pressure gradient forces (APFs). Energetic mesoscale variability may also serve to accelerate undercurrents via mesoscale stirring of the potential vorticity gradient imposed by the continental slope. However, it remains unclear whether this eddy rectification mechanism contributes substantially to driving poleward undercurrents in EBUS. This study isolates the influence of eddy rectification on undercurrents via a suite of idealized simulations forced either by alongshore winds, with or without an APF, or by randomly generated mesoscale eddies. It is found that the simulations develop undercurrents with strengths comparable to those found in nature in both wind-forced and randomly forced experiments. Analysis of the momentum budget reveals that the along-isobath undercurrent flow is accelerated by isopycnal advective eddy momentum fluxes and the APF and retarded by frictional drag. The undercurrent acceleration may manifest as eddy momentum fluxes or as topographic form stress depending on the coordinate system used to compute the momentum budget, which reconciles these findings with previous work that linked eddy acceleration of the undercurrent to topographic form stress. The leading-order momentum balance motivates a scaling for the strength of the undercurrent that explains most of the variance across the simulations. These findings indicate that eddy rectification is of comparable importance to the APF in driving poleward undercurrents in EBUSs and motivate further work to diagnose this effect in high-resolution models and observations and to parameterize it in coarse-resolution ocean/climate models.more » « less
-
Abstract Barrier layers in the tropics trap heat in a shallow and stable near‐surface layer and limit entrainment of cooler water from below. Both processes act to increase sea surface temperature and enhance atmospheric convection. The high resolution fully coupled pre‐industrial Energy Exascale Earth System Model version 0 (E3SMv0) is used to investigate the relationship between barrier layers in the eastern Indian Ocean during the wet season with local atmospheric convection and remote rainfall. A partial least squares regression reveals a significant relationship between Australasian rainfall and the barrier layer thickness (BLT) west of Sumatra, occurring one month earlier. The largest positive regression coefficients are over northern Australia. The region west of Sumatra is strategically located where the East‐Asian monsoon moisture flows toward northern Australia. Thickening of the west Sumatra BLT intensifies evaporation and local convection and amplifies the moisture transported to Australia acting to increase the terrestrial rainfall.more » « less
An official website of the United States government
